
Move 'n
Modernize
An illustrated encyclopedia
for optimization

November 5, 2024

Jacopo Malnati, CEO

We are a premium Swiss tech consultancy
committed to maximizing the potential of your
existing ECM platform by leveraging the
capabilities of Extended ECM and Module Suite.

120+ <29 20+ 15+ 10+
Projects

completed
Average project

delivery

Days

Years of IT
expertise

Industry
Certifications

Move & Modernize
projects

completed

Since AnswerModules established the
certification process for Solex Partners on
cloud containers, AnswerConsulting has
defined the practices and exceptions that
guide how professional service providers
interact with the OpenText Cloud team.

It has been quite a ride!

Chapter 1

The Space Odissey

New Order
Chapter 2

How to survive the entropy of low-value
containers in terms of data and functionality,
by creating new paradigms where users
interact with micro-applications rather than
cardboard boxes.

Folders
Plain and flat containers
Default view, no custom perspective

Custom OScript Objects
Require a custom OScript module
Require a new subtype (ignored by the rest of the world)
Complex development (OScript & IDE)
Business logic scattered through the layers
Complex deployment
Hard to extend and maintain
Not cloud-compatible

Folders
Plain and flat containers
Default view, no custom perspective

Business Workspace + Module Suite
Smart and native container

Custom perspective (Perspective Manager)
Roles management

Extendable through the Module Suite (UI/UX and functionality)
Seamless migration to Business WorkspacesCustom OScript Objects

Require a custom OScript module
Require a new subtype (ignored by the rest of the world)
Complex development (OScript & IDE)
Business logic scattered through the layers
Complex deployment
Hard to extend and maintain
Not cloud-compatible

Folders
Plain and flat containers
Default view, no custom perspective

Business Workspace + Module Suite
Smart and native container

Custom perspective (Perspective Manager)
Roles management

Extendable through the Module Suite (UI/UX and functionality)
Seamless migration to Business WorkspacesCustom OScript Objects

Require a custom OScript module
Require a new subtype (ignored by the rest of the world)
Complex development (OScript & IDE)
Business logic scattered through the layers
Complex deployment
Hard to extend and maintain
Not cloud-compatible

Folders
Plain and flat containers
Default view, no custom perspective

Business Workspace + Module Suite
Smart and native container

Custom perspective (Perspective Manager)
Roles management

Extendable through the Module Suite (UI/UX and functionality)
Seamless migration to Business WorkspacesCustom OScript Objects

Require a custom OScript module
Require a new subtype (ignored by the rest of the world)
Complex development (OScript & IDE)
Business logic scattered through the layers
Complex deployment
Hard to extend and maintain
Not cloud-compatible

Folders
Plain and flat containers
Default view, no custom perspective

How to Move&Modernize
Identification of legacy containers

Content visibility by role
Structured data presentation

Functional requirements definition
Building block strategy
Legacy data migration

Chapter 3

The Maze
How to prevent technical debt from
becoming an obstacle to daily operations.

When something simple becomes complex,
users are the first to suffer for reasons they
don't understand—and they don’t like it.

Messy Workflows
Complex design (editor limits)
Might become unreadable
Hard to extend (mix of retroactive changes, and not)
Hard to maintain

Content Script Steps
Programmatic workflow control (activities and routing)

Improved process efficiency (speed, resilience and reliability)
Enhanced workflow understandability (like a BPM)

Simplified maintenance
Ease of evolution (even retroactive)

Messy Workflows
Complex design (editor limits)
Might become unreadable
Hard to extend (mix of retroactive changes, and not)
Hard to maintain

Messy Workflows
Complex design (editor limits)
Might become unreadable
Hard to extend (mix of retroactive changes, and not)
Hard to maintain

Content Script Steps
Programmatic workflow control (activities and routing)

Improved process efficiency (speed, resilience and reliability)
Enhanced workflow understandability (like a BPM)

Simplified maintenance
Ease of evolution (even retroactive)

OScript Callbacks
Invasive
Lack of resiliency and visibility
Require a custom OScript module
Complex development (OScript & IDE)
Business logic scattered through the layers
Complex deployment
Hard to extend and maintain
Not cloud-compatible

Content Script Callbacks
Centralized or specific to a single workflow

Resilient code
Expressiveness

Enhanced visibility
Ease of implementation and evolution

How to Move&Modernize
Simplify the workflow map

Rewrite OScript Callbacks as Content Scripts
Leverage existing functionalities
Collaborative workflow analysis

Simplify technical steps
Decommission external systems

Chapter 4

The Beauty
Beauty is in the eye of the beholder, but also
in the hands of the user.

How to create a system that is not only
visually appealing but also accessible and
functional, one that doesn’t make users
regret coming to work.

WebReport Forms
Code based and not really MVC
Limited expressiveness
Lack of logs
Hard to extend and maintain (spaghetti reports)

WebLingo Forms
Requires a custom OScript module
Complex development (OScript & IDE)
Business logic scattered through the layers
Not really MVC
Complex deployment
Hard to extend and maintain
Not cloud-compatible

Beautiful Web Forms
Component based (reusable and accessible)
WYSIWYG editor (user-friendly form designer)

Configuration over customization
Minimal coding needs (with exceptional expressiveness)

Efficient development
Low maintenance and high extensibility

WebReport Forms
Code based and not really MVC
Limited expressiveness
Lack of logs
Hard to extend and maintain (spaghetti reports)

WebLingo Forms
Requires a custom OScript module
Complex development (OScript & IDE)
Business logic scattered through the layers
Not really MVC
Complex deployment
Hard to extend and maintain
Not cloud-compatible

Beautiful Web Forms
Component based (reusable and accessible)
WYSIWYG editor (user-friendly form designer)

Configuration over customization
Minimal coding needs (with exceptional expressiveness)

Efficient development
Low maintenance and high extensibility

WebReport Forms
Code based and not really MVC
Limited expressiveness
Lack of logs
Hard to extend and maintain (spaghetti reports)

WebLingo Forms
Requires a custom OScript module
Complex development (OScript & IDE)
Business logic scattered through the layers
Not really MVC
Complex deployment
Hard to extend and maintain
Not cloud-compatible

Beautiful Web Forms
Component based (reusable and accessible)
WYSIWYG editor (user-friendly form designer)

Configuration over customization
Minimal coding needs (with exceptional expressiveness)

Efficient development
Low maintenance and high extensibility

WebReport Forms
Code based and not really MVC
Limited expressiveness
Lack of logs
Hard to extend and maintain (spaghetti reports)

WebLingo Forms
Requires a custom OScript module
Complex development (OScript & IDE)
Business logic scattered through the layers
Not really MVC
Complex deployment
Hard to extend and maintain
Not cloud-compatible

Beautiful Web Forms
Component based (reusable and accessible)
WYSIWYG editor (user-friendly form designer)

Configuration over customization
Minimal coding needs (with exceptional expressiveness)

Efficient development
Low maintenance and high extensibility

WebReport Forms
Code based and not really MVC
Limited expressiveness
Lack of logs
Hard to extend and maintain (spaghetti reports)

WebLingo Forms
Requires a custom OScript module
Complex development (OScript & IDE)
Business logic scattered through the layers
Not really MVC
Complex deployment
Hard to extend and maintain
Not cloud-compatible

Beautiful Web Forms
Component based (reusable and accessible)
WYSIWYG editor (user-friendly form designer)

Configuration over customization
Minimal coding needs (with exceptional expressiveness)

Efficient development
Low maintenance and high extensibility

WebReport Forms
Code based and not really MVC
Limited expressiveness
Lack of logs
Hard to extend and maintain (spaghetti reports)

WebLingo Forms
Requires a custom OScript module
Complex development (OScript & IDE)
Business logic scattered through the layers
Not really MVC
Complex deployment
Hard to extend and maintain
Not cloud-compatible

Beautiful Web Forms
Component based (reusable and accessible)
WYSIWYG editor (user-friendly form designer)

Configuration over customization
Minimal coding needs (with exceptional expressiveness)

Efficient development
Low maintenance and high extensibility

WebReport Forms
Code based and not really MVC
Limited expressiveness
Lack of logs
Hard to extend and maintain (spaghetti reports)

WebLingo Forms
Requires a custom OScript module
Complex development (OScript & IDE)
Business logic scattered through the layers
Not really MVC
Complex deployment
Hard to extend and maintain
Not cloud-compatible

Smart Pages
Same concept, different context

Smart Pages
Same concept, different context

Smart Pages
Same concept, different context

Smart Pages
Same concept, different context

Smart Pages
Same concept, different context

Smart Pages
Same concept, different context

Reusable complex components
Modularity is the key

Consistent User Experience
Streamlined Development
Enhanced Maintainability

Reusable complex components
Modularity is the key

Consistent User Experience
Streamlined Development
Enhanced Maintainability

Reusable complex components
Modularity is the key

Consistent User Experience
Streamlined Development
Enhanced Maintainability

Reusable complex components
Modularity is the key

Consistent User Experience
Streamlined Development
Enhanced Maintainability

Low Level Customizations
Requires a custom OScript module
Complex development (OScript & IDE)
Business logic scattered through the layers
Not really MVC
Complex deployment
Hard to extend and maintain
Not cloud-compatible

Module Suite UI Hooks
Convention over configuration

Event-Driven code execution
Dynamic UI customization

Reduced custom coding
Improved system maintainability

Enhanced user experience

How to Move&Modernize
Start from business-oriented descriptions

Function analysis and rapid prototyping
Reuse existing components

Decommission external systems
Standardize and abstract customizations

High-Level Reimplementation of Low-Level customizations
Accessibility needs assessment

Chapter 5

The Doc.
How to let documents blossom from your
data, minimizing user interaction and the
need for editing and review by leveraging
native mechanisms or the best engines
available on the market.

PDF, DOCX, XLSX—you name it, each format
handled in its ideal way.

Custom code and libraries
Require a custom OScript module
Complex development (OScript & IDE)
Business logic scattered through the layers
Complex deployment
Hard to extend and maintain
Not cloud-compatible

External tools
Lack of synchronous integration
Extended ECM just as document storage
Maintenance costs Accessibility

Focus on document accessibility
Integration with Accessibility Tools

OpenText Output Transformation Server

External rendition engines integration
Integration with unlimited external rendition engines

OpenText Blazon, Intelligent Viewing, Adlib, Global Cents Power Docs, and custom engines
Established networking and traffic best practices (with OpenText cloud team)

Out of the box functionalities
Programmatic document creation and manipulation (PDF, DOCX, XLSX, etc.)

Synchronous operations with immediate feedback
Native interaction

Native export to PDF and XLS

External rendition engines
Asynchronous integration
Lack of native integration mechanisms
Reduced visibility and resilience
Slower integration performance

Custom code and libraries
Require a custom OScript module
Complex development (OScript & IDE)
Business logic scattered through the layers
Complex deployment
Hard to extend and maintain
Not cloud-compatible

External tools
Lack of synchronous integration
Extended ECM just as document storage
Maintenance costs Accessibility

Focus on document accessibility
Integration with Accessibility Tools

OpenText Output Transformation Server

External rendition engines integration
Integration with unlimited external rendition engines

OpenText Blazon, Intelligent Viewing, Adlib, Global Cents PowerTools, and custom engines
Established networking and traffic best practices (with OpenText cloud team)

Out of the box functionalities
Programmatic document creation and manipulation (PDF, DOCX, XLSX, etc.)

Synchronous operations with immediate feedback
Native interaction

Native export to PDF and XLS

External rendition engines
Asynchronous integration
Lack of native integration mechanisms
Reduced visibility and resilience
Slower integration performance

How to Move&Modernize
Analyze and rebuild document creation services

Minimize code and effort
Decommission file-based data exchange

Promote real-time interactions
Accessibility needs assessment

Evaluate best rendition engine for the use cases

Chapter 6

The RippleEffect
A closed system is a dead system. If it’s not
dead, it means a user is doing a machine’s job.

How to integrate any system bidirectionally, for
any need, in any way.

Custom code and libraries
Require a custom OScript module
Complex development (OScript & IDE)
Business logic scattered through the layers
Complex deployment (module and supporting files)
Client side WebLingo API calls (JavaScript)
Hard to extend and maintain
Not cloud-compatible

Workflow URL step
Hope-oriented design

Client side WebReport API calls
Client side WebReport API calls (JavaScript)

Content Script integrations
Bidirectional integration

Flexible file exchange and custom APIs
Synchronous and asynchronous synergy

Independent of OScript and external libraries
Enhanced maintainability and troubleshooting

Custom audit and visibility

Custom code and libraries
Require a custom OScript module
Complex development (OScript & IDE)
Business logic scattered through the layers
Complex deployment (module and supporting files)
Client side WebLingo API calls (JavaScript)
Hard to extend and maintain
Not cloud-compatible

Workflow URL step
Hope-oriented design

Client side WebReport API calls
Client side WebReport API calls (JavaScript)

How to Move&Modernize
Analyze third-party interactions

Modernize communication mechanisms
Evaluate synchronous vs. asynchronous communication

Transition from file-based to API-based communication
Assess potential for system decommissioning

Chapter 7

The WinningGear
How to run jobs without relying on hope, by
removing the blindfold and knowing exactly
what’s happening.

Driving blind is never a good idea, especially
when your business processes depend on it.

Custom Agent
Requires a custom OScript module
Complex development (OScript & IDE)
Business logic scattered through the layers
Complex deployment
Hard to extend and maintain
Not cloud-compatible

Scheduled WebReport
Limited expressiveness
No resilience or error handling
Lack of visibility
Business logic in stored procedures

Custom Agent
Requires a custom OScript module
Complex development (OScript & IDE)
Business logic scattered through the layers
Complex deployment
Hard to extend and maintain
Not cloud-compatible

Scheduled WebReport
Limited expressiveness
No resilience or error handling
Lack of visibility
Business logic in stored procedures

Content Scripts as Jobs
Background execution scheduling

Map-Reduce paradigm support
High expressiveness and simplicity

Enhanced maintainability and troubleshooting
Enhanced visibility
Dedicated workers

How to Move&Modernize
Review and reimplement scheduled WebReports

Replace custom agents with Content Scripts
Optimize xECM integration

Decommission external systems
Optimize throughput and load

Chapter 8

The Navigator
Just because you have a Ferrari doesn’t mean
you won’t get a flat...or crash into a wall.

Here’s how to mitigate or eliminate issues to
ensure backward compatibility for solutions
built with the Module Suite, even if they were
developed following bad practices.

Module Suite Bad Practices
Core widget override
Groovy syntax bad practices (attribute vs getter)
Heavy use of queries over higher-level functionalities
Heavy use of external Java libraries

Bad Practices Assessment
Extensive Move&Modernize experience

Identification of bad practices
Effective solutions readily available

Cloud-Compliant alternatives

Module Suite Bad Practices
Core widget override
Groovy syntax bad practices (attribute vs getter)
Heavy use of queries over higher-level functionalities
Heavy use of external Java libraries

Bad Practices Assessment
Extensive Move&Modernize experience

Identification of bad practices
Effective solutions readily available

Cloud-Compliant alternatives

Module Suite Bad Practices
Core widget override
Groovy syntax bad practices (attribute vs getter)
Heavy use of queries over higher-level functionalities
Heavy use of external Java libraries

Bad Practices Assessment
Extensive Move&Modernize experience

Identification of bad practices
Effective solutions readily available

Cloud-Compliant alternatives

Chapter 9

The Discovery
How to get the most from one effort, hitting
two (or even three) birds with one stone.

Move & Modernize isn’t just about addressing
technical limitations and incompatibilities;

it offers real opportunities for reengineering
and improvements, so the project ends with
smiles all around—from those paying for it
and those who will use it.

Proud to participate as Leader Sponsor
Visit us at booth #309!

AnswerModules User Group
November 20 from 1:00-3:15 pm
Delfino Room 4105

Q&A
Feel free to ask any questions in the panel

Jacopo Malnati
CEO

j.malnati@answerconsulting.ch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

